skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Campos, Luis_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The advent of covalent adaptable networks (CANs) through the incorporation of dynamic covalent bonds has led to unprecedented properties of macromolecular systems, which can be engineered at the molecular level. Among the various types of stimuli that can be used to trigger chemical changes within polymer networks, light stands out for its remote and spatiotemporal control under ambient conditions. However, most examples of photoactive CANs need to be transparent and they exhibit slow response, side reactions, and limited light penetration. In this vein, it is interesting to understand how molecular engineering of optically active dynamic linkages that offer fast response to visible light can impart “living” characteristics to CANs, especially in opaque systems. Here, the use of carbazole‐based thiuram disulfides (CTDs) that offer dual reactivity as photoactivated reshuffling linkages and iniferters under visible light irradiation is reported. The fast response to visible light activation of the CTDs leads to temporal control of shape manipulation, healing, and chain extension in the polymer networks, despite the lack of optical transparency. This strategy charts a promising avenue for manipulating multifunctional photoactivated CANs in a controlled manner. 
    more » « less
  2. Abstract High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle‐reinforced composite networks since deep light penetration of short‐wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet–triplet annihilation upconversion (TTA‐UC) is employed for curing opaque hydrogel composites created by direct‐ink‐write (DIW) 3D printing. TTA‐UC converts low energy red light (λmax = 660 nm) for deep penetration into higher‐energy blue light to initiate free radical polymerizations within opaque objects. As proof‐of‐principle, hydrogels containing up to 15 wt.% TiO2filler particles and doped with TTA‐UC chromophores are readily cured with red light, while composites without the chromophores and TiO2loadings as little as 1–2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D‐printed composite polymer networks. 
    more » « less
  3. Abstract The ability to optically induce biological responses in 3D has been dwarfed by the physical limitations of visible light penetration to trigger photochemical processes. However, many biological systems are relatively transparent to low‐energy light, which does not provide sufficient energy to induce photochemistry in 3D. To overcome this challenge, hydrogels that are capable of converting red or near‐IR (NIR) light into blue light within the cell‐laden 3D scaffolds are developed. The upconverted light can then excite optically active proteins in cells to trigger a photochemical response. The hydrogels operate by triplet–triplet annihilation upconversion. As proof‐of‐principle, it is found that the hydrogels trigger an optogenetic response by red/NIR irradiation of HeLa cells that have been engineered to express the blue‐light sensitive protein Cry2olig. While it is remarkable to photoinduce the clustering of Cry2olig with blanket NIR irradiation in 3D, it is also demonstrated how the hydrogels trigger clustering within a single cell with great specificity and spatiotemporal control. In principle, these hydrogels may allow for photochemical control of cell function within 3D scaffolds, which can lead to a wealth of fundamental studies and biochemical applications. 
    more » « less